
Usage of State Space to Control Systems

Finn O’Toole Boire
Programmer

FRC 1678, Davis, CA

July 22, 2016

Controllers are devices that monitor a system and then alter the state of
the system, which generally is some sort of physical changing of the system.
In relation to programming our robot, we use controllers to make the various
systems on the robot go to desired positions. State space is one of those such
controllers, and compared to many other controllers, it is more refined.

1 The Model

1.1 Standard System Model

For state space, you need to have a model of a system. Models can be drawn
with a flowchart. This is a block diagram displaying how the input vector u
makes the system react, which shown as the vector y.

u B +
∫

A

C y
ẋ x

A, B, and C are all matrices with values and sizes that are determined by
the model and number of inputs in the system. A vector, u, contains the output
to the system, which generally in robot programmings’ case, is in the form of
voltage. y is another vector, which contains the sensors that measure the system
(i.e. encoders, gyro). There is one more vector as well, x1, which holds a record
of all the states of the system. This is an example x vector.

x

[
θ

θ̇

]
1x, u, and y are both functions of time, formally notated x(t), u(t), and y(t). I’m leaving

them out to make the equations remain clean-looking

1



This X vector holds the current angle being held by an arbitrary system and
the current angular velocity. If you have other variables that you want to keep
track of within your system, like a gyro angle, or encoders, you would add them
like so:

x


θ

θ̇
X

Ẋ


Generally, you don’t have to include the second derivative of anything you

are keeping in the state vector, because it isn’t necessary in the model of the
system, as you can see in the flow chart. There is rarely an ẍ, only a ẋ or x that
is ever used as an input or output to any part of the system, as most systems
don’t pass beyond a second degree differential equation.

1.2 Finding A and B

The A, B, and C matrices comprise of different segments of the model of a
system. An easy system to model is that of a motor with a weight, effectively
a flywheel, and for such a system, you derive the values of the various matrices
with the help of these two formulae:

ẋ = Ax+Bu

y = Cx+Du

To find A and B, you take the model of your system, which you determine
by doing math on how the various forces acting on the system affect it. You
want to find how the various states of the state vector x, relate to each other
and to themselves. This does require some knowledge of matrices, but it’s
relatively easy.2 Taking the coefficients of the equations you derive for how
each state relates to the others, and you can arrange them in a matrix that lets
you multiply your state vector x by A and add the output u to the matrix B to
get some sort of change in x, also known as ẋ. To find C, you need to see how
y relates to the states of the system x and the inputs u to the system, much in
the same way as you need to see how the states and inputs of x and u relate to
the system in finding A and B.

2 State Space Controllers

2.1 Basic Controller

For you to actually affect the system, there has to be some sort of controller
that takes in the state of the system, which we have previously defined as x and

2See the examples if you want to see how this actually works, because this can seem pretty
confusing without something to compare it to.

2



then outputs something (u) to change the state of the system. In the realm of
robot programming, that output is generally voltage.

u = −Kx

This is the equation that correlates the state of the system to the voltage,
where K is a matrix that contains values that you tune for on the system or state
space model. The negative sign before K is purely cosmetic and if you leave it
out in your controller, it won’t affect the end result, from what I understand.

2.2 Finding Poles

To find poles of your system controller, you find the transfer function3 of your
state space model:

ẋ = Ax+Bu

y = Cx+Du

L(ẋ)→ sX(s) = AX(s) +BU(s)

L(y)→ Y (s) = CX(s) +DU(s)

You start by taking the Laplace transform4 of the model, changing the func-
tion to the frequency domain. We want to solve for the ratio of Y(s) to U(s).
You can do that by solving the state equation for X(s), or simply using Octave’s
ss2tf command, which converts a state system to its relative transfer function
and makes it easy to find the poles of the function, provided it is a single-input
and single-output system. The transfer function typically simplifies to some

function that can be represented as a polynomial over a polynomial, like Y (s)
U(s) .

The poles of any such function are defined as when U(s) = 0.

3Which is another way to model your system.
4Just a little footnote, Laplace transforms are really cool! You multiply by s to take the

derivative of a function in the frequency domain.

3



2.3 How Poles Behave

imaginary

real

The plane that the polynomial Y (s)
U(s) is represented in is the s-plane, which

has a real and complex axis. The poles of the system have real and complex
components, which, based off of where they are placed, affect the stability of
the system.

imaginary

Z

W

XX

Y

V

U
real

The poles that you find with the Laplace transform take the form y = ceat

as solutions to the differential equation of x, the state vector. In the equation
y = ceat, a is the coordinate of the pole, and c is an arbitrary constant. Let’s
look at what the properties of each of these poles, on this graph, starting with
the pole U . With U being at the center of both axes, the Eigen values of
the pole are zero, and the plant neither converges or diverges, making it a
marginally stable controller and plant. This can also be shown by plugging in
the coordinates of the pole. Since a is zero, as t → ∞, it evaluates to simply
c, and neither grows infinitely large or small, oscillating indefinitely. Next, Z is
in the positive side of the real axis. Positive exponents make systems diverge,
and this can be seen if we substitute the coordinates for Z as a. As t → ∞,
the solution will grow infinitely large, as any exponent to the positive power
will do as it approaches infinity. Now, let’s look at X, which has a negative
real component and no imaginary component. If you let a equal the coordinates
of X, the pole’s equation would have a small negative real part, making it
converge rather quickly to 0, as when a is negative and t → ∞, the pole’s

4



solution will approach 0. Next, looking at W , since it has a greater negative
real component, it will also converge on 0, but more quickly, as dictates the
properties of exponents. Continuing, if we look at the pole at Y , it has a both
imaginary and real part, meaning it is represented as a complex number (a+bi).
If we substitute a as a complex number, the solution to the differential equation
will be something like ce(a+bi)t. Knowing that eix = cos(x) + isin(x), it shows
that any function with an imaginary component will oscillate, and the more
of an imaginary component the number has, the faster it will oscillate. Along
with that, if there is a pole with an imaginary component, there will also be a
pole that is its conjugate. To more easily view how all of these poles affect the
output of the K matrix, here is the plot of all of the different poles and how
they will make the system converge:

−4 −3 −2 −1 1 2 3 4

−10

−5

5

10

t

y

Z
X
W
U

Y and V

This graph displays the properties of all of the different possible poles and
how they change what happens when they are moved about both the imaginary
and real plane.

2.4 Finding K

To find K, you need to change the model of the system. Since u = −Kx, you
can plug that into the state space model, and get:

ẋ = Ax−BKx

Factor out the x
ẋ = (A−BK)x

From here, you can go two different ways, which is to use pole placement
or LQR to find the values of the K matrix. We are only going to focus on
pole placement, as LQR5 is much more complicated and I don’t have a solid
grasp of it yet. However, if you are using pole placement, you are essentially
tuning K to make the poles of the system (with the controller implemented)
be where you want. By manipulating K, you can move the poles of the system
(with controller) so that the solutions oscillate at a slower speed (by making

5It allows you to weight your output to the system, so if you are keeping track of multiple
inputs and outputs, you can make it prioritize one of the inputs and be more customizeable.

5



the imaginary component smaller), converge more quickly (by making the real
component larger), and etc.

3 Examples of State Space Models

3.1 Mass on a Spring

The model of a system of a mass on the end of a spring with an input force and
friction:

u+ kx+ bẋ = mẍ

On this model, we need to define some variables. With this system, you can
model it as u being the input force onto the system, as opposed to voltage like
we will do on the flywheel. Along with that, k is the spring constant, and x is
the displacement of the spring. Friction is modeled as a constant b multiplied
by your velocity, or ẋ. And finally, m is mass, which you are multiplying by ẍ
to get a force. So in total, your system is the input force u - the spring force kx
- the friction force bẋ equals the total force, or mẍ. Now, having established the
model of the system, we can begin solving for the A, B and C matrices. If we
begin by re-naming the variables, we can change x = x1, ẋ = x2, and u = u1.
Notice that there is now a relationship between x1 and x2, as x2 = ẋ1. Now,
if we re-write the model to be based off of these new variables, it will look like
this:

u1 − kx1 + bx2 = mẋ2

Now, what we want to do is take each of the states and look at its dynamics,
meaning, finding the derivative of each of the states in terms of the other terms,
x1, x2, and u1.

ẋ1 = x2

ẋ2 =
−k
m
x1 +

−b
m
x2 +

1

m
u1

We want to still know how ẋ1 relates to itself, x2, and u1.

ẋ1 = 0x1 + 1x2 + 0u1

ẋ2 =
−k
m
x1 +

−b
m
x2 +

1

m
u1

And knowing this, that the vector of states x =

[
x1
x2

]
and the vector of inputs

u =
[
u1
]
, then we can find the matrices A and B, because they are multiplied

as Ax and Bu to get ẋ. This means that the matrices

A =

[
0 1
−k
m

−b
m

]

6



B =

[
0
1
m

]
And by doing the same process on y, which equals x1, you can find the C

and D matrices.

ẏ = 1x1 + 0x2 + 0u1

C =
[
1 0

]
D =

[
0
]

After you find all the matrices, you have a state space model of the system.
To tune the controller, whose equation is u = −Kx, you begin using pole
placement or LQR, and you don’t need a physical system to test it on, as the
state space model allows you fairly realistic system response for the tuning of
K.

3.2 Flywheel

Knowing the model of a motor with relation to voltage and angular velocity is

θ̈ =
KT

JGR
V − KTKV

JG2R
θ̇

where KT is the coefficient of torque, J is the moment of inertia of the system,
G is the gear ratio, KV is the voltage constant (related to backemf), and R is
the resistance of the motor. and we assume that our state vector and input
vector

x =

[
θ

θ̇

]
u =

[
V
]

We can solve for the values of A and B by writing the model in terms of x1 and
x2.

x1 = θ

x2 = ˙theta = ẋ1

u1 = V

Substitute it into the model

ẋ2 =
−KTKV

JG2R
x2 +

KT

JGR
u1

Notice that x1 doesn’t show up in the model, so now, when we take the
derivative of x to find how the states relate to each other, it is equal to zero.

ẋ1 = 0x1 + 0x2 + 0u1

7



ẋ2 = 0x1 +
−KTKV

JG2R
x2 +

KT

JGR
u1

To find A and B, you take the components that multiply together to form
the resultant vector ẋ (Ax and Bu), and plug them in.

A =

[
0 0
0 −KTKV

JG2R

]
B =

[
0

KT

JGR

]
Then, to find C and D, you do the same for y as we did in the model of the

spring, where Kc is the conversion constant.

y = Kcx1 + 0x2 + 0u1

C =
[
Kc 0

]
From there, you have a working model that you can then use pole placement

to find the values of K, and tune your controller off of.

4 Conclusion

I hope this documentation on how state space works has been helpful, and there
is still very much to add. I’m going to be updating this as I learn more about
state space, but for now, I hope this will help anyone who is looking to both
model and create a controller with a state space system. Along with this docu-
ment, I’d like to link6 this YouTube channel, which has helped me understand
a lot of the concepts that I talked about and explained in the document.

6https://www.youtube.com/user/katkimshow/videos

8


